DetailedSolution. Given if I n = ∫π −π sinnx (1+πx)sinx dx,(1) i f I n = ∫ − π π s i n n x ( 1 + π x) s i n x d x, ( 1) I n = ∫π −π πxsinnx (1+πx)sinx dx.(2) I n = ∫ − π π π x s i n n x ( 1 + π x) s i n x d x. ( 2) On adding Eqs. (i) and (ii), we have.
Multiplyboth sides by n n. 1+sin(x) n n = kn 1 + sin ( x) n n = k n. Simplify the left side. Tap for more steps sin(x)+1 = kn sin ( x) + 1 = k n. Subtract 1 1 from both sides of the equation. sin(x) = kn−1 sin ( x) = k n - 1. Take the inverse sine of both sides of the equation to extract x x from inside the sine.
but still positive), so each positive limit has a "basin of attraction" that includes an open inteval of values for $x_0$ slightly greater than the limit (and likewise, for each negative limit, an open interval of values slightly less than the limit -- since $|x_{n+1}|=|x_n\sin x_n|\le|x_n|$, successive terms in any sequence always get closer to the origin).
Vay Tiền Nhanh. Trigonometry Examples Popular Problems Trigonometry Simplify 1+sinx1-sinx Step 1Apply the distributive 2Multiply by .Step 3Rewrite using the commutative property of 4Multiply .Tap for more steps...Step to the power of .Step to the power of .Step the power rule to combine and .
>>Class 11>>Maths>>Trigonometric Functions>>Trigonometric Functions of Sum and Difference of Two angles>>Prove sinn + 1x sinn + 2 x + cos n Open in AppUpdated on 2022-09-05SolutionVerified by TopprTo prove- Proof Hence any question of Trigonometric Functions with-Was this answer helpful? 00More From ChapterLearn with Videos Practice more questions
I'm studying convergent sequences at the moment. And I came across this question in the section of Stolz Theorem. I realised that $\{x_n\}$ is monotonously decreasing and has a lower bound of $0$, so $\{x_n\}$ must be convergent, and the limit is $0$ let $L=\sinL$, then $L=0$. So to prove the original statement, I just need to prove lim nXn^2 → 3, and in order to prove that, I just need to prove $\lim \frac{1}{x_n^2} - \frac{1}{{x_{n-1}}^2} \to \frac{1}{3}$ by Stolz Theorem but I have no clue what to do from there. PS $x_{n+1}$ is $x$ sub $n+1$, and $x_n$ is outside the square root. Thanks guys
sin n 1 x sin n 1 x